
Enabling Performance Portability for Shallow Water Equations on CPUs,
GPUs, and FPGAs with SYCL

Markus Büttner 1 Christoph Alt 2,3 Tobias Kenter 2

Harald Köstler 3 Christian Plessl 2 Vadym Aizinger 1

1Chair of Scientific Computing, University of Bayreuth

2Paderborn Center for Parallel Computing

3Department of Computer Science, FAU Erlangen

June 3rd, 2024
PASC 2024

Shallow Water Equations

∂tξ +∇ · q = 0

∂tq +∇ · (qqT/H) + τbf q +
(

0 −fc
fc 0

)
q + gH∇ξ = F

Variables: Water height ξ, horizontal velocity q = (U,V)T

Total water depth H = hb + ξ

Depth-integrated vertical velocity
Application: Coastal ocean simulations (tides, tsunamis, storm surges)

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 2 / 21

Discontinuous Galerkin method

Partition of domain into triangles Ωe

Hierarchical basis on each triangle (orthogonal polynomials on triangles)
Define discrete solution c∆ = (ξ∆,U∆,V∆),

ξ∆(t, x) =
k∑

j=1

c1j(t)ϕj(x) U∆(t, x) =
k∑

j=1

c2j(t)ϕj(x) V∆(t, x) =
k∑

j=1

c3j(t)ϕj(x)

k dependent on order (1 for piecewise constant, 3 for linear, 6 for quadratic basis)
Degrees of freedom (DOF) cij per element (i = 1, 2, 3, j = 1, . . . , k)

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 3 / 21

Discontinuous Galerkin method

Multiply with test function ϕ∆, integrate over Ωe ,
integration by parts once
Solution generally has jumps between elements
Discretization locally mass conservative
Original UTBEST implementation in Fortran/C 1

d

dt

∫
Ωe

ξ∆ϕ∆dx −
∫

Ωe

q∆ · ∇ϕ∆dx +
∫
∂Ωe

F̂ (ξ∆, q∆, ξ̃∆, q̃∆, ne)ϕ∆dx = 0

with numerical flux F̂ (Lax-Friedrichs); ξ̃∆, q̃∆ values from neighbour element, ne outward
pointing normal vector

1V. Aizinger and C. Dawson, "A discontinuous Galerkin method for two-dimensional flow and transport in
shallow water", Advances in Water Resources, 2002

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 4 / 21

Element-wise implementation of DG

Projection approach originally
implemented for FPGAs 2

Compute L2 projection of solution
onto edges
Use projected solution during edge
integration

→ No loop-carried dependencies in
element loop, trivial to parallelize

while t < t1 do
Loop over Runge–Kutta stages:
for all stages of the Runge–Kutta method do

Element loop:
for all element indices e ∈ {1, . . . ,E} do

calculate element integrals
calculate edge integrals, update only own element
calculate c∆ for the next Runge-Kutta stage
perform minimum depth control on c∆
for all edges belonging to Ωe do

p∆ ← projection of c∆ to edge
store p∆ in global array

end for
end for

end for
t ← t + ∆t

end while

2Kenter et al. "Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow
architecture on FPGA", PASC 2021

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 5 / 21

Goal: Single-source Performance Portability

Target platform: CPUs, GPUs and FPGAs
Existing codes target only CPUs or GPUs or use code generation

Can we run on all three platforms using the same source code?

Reuse as much code as possible
Some hardware-specific abstractions might be necessary
SYCL: open standard for single-source programming for heterogeneous computing
oneAPI supports CPUs, GPUs and Intel FPGAs out of the box
AdaptiveCpp supports CPUs and GPUs

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 6 / 21

Parallelization

parallel_for obvious choice for parallelization on CPUs and GPUs: Each work item
corresponds to one element
Double-buffering for projected solutions
single_task for pipeline design on FPGAs:

All inner loops (e.g. over quadrature points, degrees of freedom) must be unrolled
Element loop pipelined: each clock cycle one element starts processing
Multiple time-steps can be computed per kernel launch
Dependency analysis of FPGA compiler ensures correctness

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 7 / 21

Memory layout: degrees of freedom

Degrees of freedom for ξ∆, U∆ and V∆
stored in contiguous array
Memory layout depends on target
architecture
Array of Structs-like (left, original CPU
implementation, FPGAs)
Struct of Arrays-like (right, CPUs and
GPUs with SYCL)
Switched by compile-time flag

element 1

element 2

element 64

DOF 1 DOF 2 DOF 3 DOF 1 DOF 2 DOF 3

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 8 / 21

Custom FPGA-Caches

Major limitation: off-chip memory bandwidth (~69 GB/s measured in stream benchmark)
Previously shown (Kenter et al., 2021): High performance possible for small meshes, but
mesh size fixed during compilation

→ Design with high performance for small meshes and no limitation on mesh size?

Implement custom caches as C++ classes
Fixed part of mesh is loaded into on-chip buffers
Cache size depends on approximation order

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 9 / 21

Custom FPGA-Caches

Major limitation: off-chip memory bandwidth (~69 GB/s measured in stream benchmark)
Previously shown (Kenter et al., 2021): High performance possible for small meshes, but
mesh size fixed during compilation

→ Design with high performance for small meshes and no limitation on mesh size?

Implement custom caches as C++ classes
Fixed part of mesh is loaded into on-chip buffers
Cache size depends on approximation order

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 9 / 21

Code design

Host code: I/O,
main simulation loop,
stability check

SYCL: Kernel launchers,
Memory management,
FPGA caches

DG discretization:
Implementation in
templated functions

SYCL compiler

CPU/GPU binary FPGA binary

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 10 / 21

Summary: Target specific optimizations

GPU CPU FPGA

kernel type parallel for single task
unrolled loops 18 × 18 × + 24 ×
DOF layout blockwise Struct of Arrays Array of Structs

caches hardware feature C++ classes

Explicit unrolled loops needed on Intel Ponte Vecchio GPUs with oneAPI compiler, not for
other GPUs or compilers

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 11 / 21

Results: Accuracy, performance, portability

Test domain

Bight of Abaco, Bahamas
Mesh sizes between 2,000 and 2,600,000 elements
Boundary conditions:

No normal flow at land boundaries
Prescribed water elevation at open sea boundary

Single precision
Reference solutions generated by sequential version
of UTBEST

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 13 / 21

Accuracy

Intel Xeon Platinum 8358 CPU and AMD MI 210 GPU
maximum difference for water elevation and velocity

Compiler Variable P0 P1 P2

oneAPI CPU ∆ξ, m 1.3 · 10−5 1.3 · 10−5 1.3 · 10−5

|∆q|, m2/s 7.2 · 10−5 8.5 · 10−5 1.3 · 10−4

oneAPI CPU ∆ξ, m 1.0 · 10−7 3.7 · 10−7 5.4 · 10−6

-fp-model=precise |∆q|, m2/s 1.1 · 10−6 3.9 · 10−6 8.7 · 10−5

oneAPI GPU ∆ξ, m 2.0 · 10−7 3.4 · 10−7 1.2 · 10−5

|∆q|, m2/s 1.1 · 10−6 1.5 · 10−5 6.5 · 10−5

oneAPI FPGA ∆ξ, m 1.0 · 10−7 3.4 · 10−7 1.5 · 10−5

|∆q|, m2/s 1.1 · 10−6 8.6 · 10−6 6.1 · 10−5

ACPP CPU ∆ξ, m 1.0 · 10−7 3.3 · 10−7 1.2 · 10−5

|∆q|, m2/s 1.1 · 10−6 8.9 · 10−6 4.5 · 10−5

ACPP GPU ∆ξ, m 1.0 · 10−7 4.1 · 10−7 8.4 · 10−6

|∆q|, m2/s 1.0 · 10−6 9.4 · 10−6 6.5 · 10−5

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 14 / 21

Performance portability on CPUs, GPUs and FPGAs

100

1,000

10,000

10,000 100,000 1,000,000

M
ill

io
n

D
O

F
/

se
co

nd

elements

Piecewise Constant

10,000 100,000 1,000,000

elements

AMD MI210
Nvidia A40

Intel Data Center GPU Max 1100

AMD EPYC 7543, 32 threads
Intel Xeon Platinum 8358, 32 threads

Intel Stratix FPGA

Piecewise Linear

10,000 100,000 1,000,000

elements

Piecewise Quadratic

Compiled with Intel oneAPI 2023.2

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 15 / 21

CPUs: Strong scaling

1 2 4 8 16 32
Number of cores

101

102

103

Ru
nt

im
e

(s
)

P0
P1
P2

AdaptiveCpp (OpenMP)
oneAPI (TBB)

(a) Intel Xeon Platinum 8358 ("Icelake")

1 2 4 8 16 32
Number of cores

101

102

103

Ru
nt

im
e

(s
)

P0
P1
P2

AdaptiveCpp (OpenMP)
oneAPI (TBB)

(b) AMD EPYC 7543 ("Milan")

Scaling tests compute a total of 1000 time steps
Good strong scaling on both CPUs for oneAPI and AdaptiveCpp

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 16 / 21

CPUs: Roofline models

1.0 10.0
Arithmetic Intensity (FLOP/byte)

100

80

90

200

300

GF
LO

P/
s

Scalar (147.8 GFLOP/s)

16
6.5

GB/s

P0 (1.5, 98.2)

P1 (3.0, 194.7)

P2 (4.5, 240.0)

P0 (1.9, 130.9)

P1 (3.5, 167.1) P2 (5.8, 153.7)

AdaptiveCpp
oneAPI
AdaptiveCpp
oneAPI

(a) Intel Xeon Platinum 8358 ("Icelake")

1.0 10.0
Arithmetic Intensity (FLOP/byte)

100

80

90

200

300

GF
LO

P/
s

Scalar (229.5 GFLOP/s)
199

.2 GB/s

P0 (1.3, 92.0)

P1 (3.0, 180.7)

P2 (4.6, 251.2)

P0 (2.8, 132.5)

P1 (4.3, 169.8)

P2 (6.3, 163.8)

AdaptiveCpp
oneAPI
AdaptiveCpp
oneAPI

(b) AMD EPYC 7543 ("Milan")

oneAPI has higher performance especially for P1 and P2
AdaptiveCpp has higher arithmetic intensity and lower performance

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 17 / 21

GPUs: Roofline models for AMD and Nvidia GPUs

1.0 10.0
Arithmetic Intensity (FLOP/byte)

1000

10000

GF
LO

P/
s

A 40 (37420 GFLOP/s)

695.8 GB/s

P0 (1.17, 702.6)

P1 (2.52, 1582.4)
P2 (2.81, 1753.8)

(a) Nvidia A 40

1.0 10.0
Arithmetic Intensity (FLOP/byte)

1000

10000

GF
LO

P/
s

MI 210 (22630 GFLOP/s)

1325 GB/s

P0 (1.02, 862.4)

P1 (3.3, 2253.7)
P2 (2.6, 2220.3)

(b) AMD MI 210

Compiler: oneAPI 2023.2
90 % memory bandwidth utilization on A 40, 65 % on MI 210
P2 has lower arithmetic intensity on MI 210 than P1

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 18 / 21

FPGA pipeline performance

0

20

40

60

80

100

10000 100000 1000000

%
 o

f
e
xe

cu
ti

o
n
 t

im
e

elements

Elements not in cache
Elements in cache

Pipeline latency

Model: Pipeline latency + No. elements in cache ·1 cycle
element + Remaining elements ·12 cycles

element

Pipeline latency significant for small meshes
Processing time of elements outside of cache dominates for larger meshes
Peak performance when pipeline latency is proportionally low, all elements in cache

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 19 / 21

Summary and Outlook

First shallow water solver targeting CPUs, GPUs and FPGAs from same codebase
Numerical algorithm separated from memory access patterns
Separate kernel launch code for CPUs/GPUs and FPGAs
Good scalability on current generation Intel and AMD CPUs
Comparable performance on Nvidia, AMD and Intel data center GPUs
Performance can vary significantly between compilers
Custom-designed, optional caches give high throughput for low mesh sizes without
imposing hard limit on number of elements

Ongoing and future work includes:
ARM CPUs
FPGAs with High Bandwidth Memory
More performance analysis and optimizations

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 20 / 21

Thank you

Questions?

Acknowledgements:
Research funded by Deutsche Forschungsgemeinschaft (DFG)
under grants AI 117/7-1 and KE 2844/1-1.
NHR@FAU, PC2: compute resources

Büttner et. al. Enabling Performance Portability for Shallow Water Equations on CPUs, GPUs, and FPGAs with SYCLJune 3rd, 2024 PASC 2024 21 / 21

	Shallow water models and Discontinous Galerkin
	Performance analysis

