
Enhancing GPU-
Accelerated
Scientific
Computing in Julia
with Ginkgo.jl

You Wu, Tobias Ribizel,
and Hartwig Anzt

05-06-2024

Table of Content

GINKGO: A MODERN
LINEAR OPERATOR
ALGEBRA
FRAMEWORK FOR
HPC

1

C API & JULIA
BINDINGS

2

HIGH-LEVEL
API DESIGN

3

Numerical
Experiments

4

Ginkgo: A Modern Linear Operator
Algebra Framework for HPC

Ginkgo

• C++ framework for sparse numerical linear algebra
• Implemented using modern C++
• Part of the Extreme-Scale Scientific Software Stack (E4S) and the

Extreme-Scale Software Development Kit (xSDK)
• Emphasis on solving sparse linear systems efficiently on GPU-

accelerated systems, using backends written in the respective
vendor languages

Designed for
Platform
Portability

[1] Tsai Y-HM, Cojean T, Anzt H. Providing performance portable numerics for Intel GPUs.

Designed for Performance

C API & Julia Bindings

C API & Maintainable Software Development
• Implementation of a C API is more versatile and can be extended to support

other languages
• Using packages such as CxxWrap.jl adds on an extra dependencies
• Calling C++ library in Julia consists of mainly three parts:

C API Implementation
• Uses the language linkage with key word extern "c"
• Difficulty lies in "translating" back modern C++ syntax back to C
• Appropriate use of macros largely avoid code duplication
• Naming convention should be well-established

Similar construct holds for
DEFINE_X_OVERLOAD that
resides in c_api.cpp

C API Implementation

Example: Creation of a
preconditioned GMRES solver
with the C API

JLL Package Creation
• JLL packages live under JuliaBinaryWrappers organization
• With build scripts hosted under JuliaPackaging/Yggdrasil
• BinaryBuilder.jl is a convenient tool for creating suitable build

scripts and creating pull requests to official Julia registry for JLL
packages

JLL Package Creation

C Bindings Generation

High-Level API Design

Code Comparison

Convenient Switch of Underlying Binaries

Using underlying binaries with user-defined location

Using underlying binaries from the JLL package

Numerical Experiments

Interoperability with Existing Packages

• Made possible by supporting implicit conversion of data types
• Ferrite.jl is a simple FEM toolbox written in Julia
• Using Ferrite.jl for FEM-based matrix assembly, and Ginkgo.jl for

sparse LSE solution with a CG solver

2D Heat Equation on Unit Square

2D Heat Equation on Unit Square

2D Heat Equation on Unit Square

Heat Conservation

[2] Gerya T. Introduction to Numerical Geodynamic Modelling. 2nd ed. Cambridge University Press; 2019.

• FD method on a staggered grid

• With marker-in-cell techniques and

adaptive timesteps

• Dimensionalized

• Ginkgo.jl sparse direct LU solver

• 10 km by 10 km square domain

with 56,700 mesh cells

Stokes Continuity Equation

• Porting Ginkgo routines to Ginkgo.jl can leverage existing highly-
optimized architecture-specific kernels

• C API approach is versatile but tedious, requires manual work
• For porting packages from other languages, Julia provides a good toolchain
• Ginkgo.jl is still under heavy development

Conclusions

	Folie 1: Enhancing GPU-Accelerated Scientific Computing in Julia with Ginkgo.jl
	Folie 2: Table of Content
	Folie 3: Ginkgo: A Modern Linear Operator Algebra Framework for HPC
	Folie 4: Ginkgo
	Folie 5: Designed for Platform Portability
	Folie 6: Designed for Performance
	Folie 7: C API & Julia Bindings
	Folie 8: C API & Maintainable Software Development
	Folie 9: C API Implementation
	Folie 10: C API Implementation
	Folie 11: JLL Package Creation
	Folie 12: JLL Package Creation
	Folie 13: C Bindings Generation
	Folie 14: High-Level API Design
	Folie 15: Code Comparison
	Folie 16: Convenient Switch of Underlying Binaries
	Folie 17: Numerical Experiments
	Folie 18: Interoperability with Existing Packages
	Folie 19: 2D Heat Equation on Unit Square
	Folie 20: 2D Heat Equation on Unit Square
	Folie 21: 2D Heat Equation on Unit Square
	Folie 22: Heat Conservation
	Folie 23: Stokes Continuity Equation
	Folie 24:

