
Using the Cerebras CS-2 for 
scientific computing via PETSc
Justs Zariņš, Joseph Lee, Michèle Weiland

j.zarins@epcc.ed.ac.uk



Overview of Cerebras CS-2

2



Wafer Scale Engine (WSE-2)

• Whole wafer chip (7nm technology)

• 850,000 cores (individually programmable)

• 40 GB on-chip memory

• 20 PB/s aggregate memory bandwidth

• Supports up to 32-bit floats and ints in HW

3



Cerebras CS-2 system

• Custom power and cooling solution to 
support the WSE

• Fits into standard racks (15RU)

• 23 kW of power

• Multiple can be networked together

4



WSE architecture

• 48 kB SRAM per processing 
element (PE)

• PEs arranged in 2D grid

• 32-bit messages (wavelets) can 
be communicated with 
neighbours in a single cycle

• Programmable router in each PE

5

Data Data

…

…

…

…

…
… … … … … …

Fabric router

Processor

Memory

Offramp Onramp

PE



What types of application suit the WSE?

6

• Appliaction is scaling poorly across multiple nodes (e.g. FFTs, 
particle simulation)

• High bandwidth and low-latency fabric

• 850k cores on an individual chip instead of distributed across many 
nodes

• Application is constrained by data access
• 40 GB of SRAM uniformly distributed across the wafer that can be 

accessed in 1 cycle

• Up to 1.2 Tb/s bandwidth onto the chip



Success stories

• “Wafer-Scale Fast Fourier Transforms”
• fastest time for a usefully sized benchmark

• “Massively scalable stencil algorithm”
• turns a memory bound problem into a compute bound problem

• “Massively Distributed Finite-Volume Flux Computation”
• two orders of magnitude speedup over GPU

• “Scaling the “Memory Wall” for Multi-Dimensional Seismic 
Processing with Algebraic Compression on Cerebras CS-2 
Systems”

• Gordon Bell finalist on 48 CS-2 systems, 93 PB/s sustained memory 
bandwidth 

7



Programming the CS-2 for AI

• High-level PyTorch interface

• Cerebras software automatically 
creates layer kernels and places 
them on the wafer

• Model size and training speed can 
be scaled independently in Cluster 
Mode

8



Programming the CS-2 for HPC

• HPC SDK available, including an accurate simulator for 
development

• Dataflow programming – tasks are activated by arrival of data 
packets

• Write kernels for PEs using CSL

• C/Zig-like syntax

• Standard: types, functions, control structures …

• Specific: builtins, modules, tasks, data structure descriptors …

9



Programming the CS-2 for HPC

• Routers have access to ~24 virtual 
communication channels (colours) for passing 
messages (wavelets)

• need to make sure send/recv are matching

• easy to run out of colours

• Useful libraries available in the SDK
• memcpy – “paste” data onto device

• collectives – e.g. scatter and gather on device

• Debugger and Visualiser are available in the 
Simulator

10



Programming the CS-2 for HPC

• Python host code to drive the application

• Layout file to place kernels and set up routers

11

run.py

layout.csl

pe_prog

1.csl

pe_prog

2.csl

pe_prog

1.csl

pe_prog

...csl



Using Cerebras CS-2

12



In practice …

• Quite tricky to program using the SDK!

• Dataflow paradigm fundamentally different from CPU/GPU

• Need to get multiple things right before any results are seen

• Hard to conceptualize the colour arrangements

• Challenging to debug deadlocks

• Want to: drive the WSE from a high level HPC application and 
reduce the barrier to using the CS-2

• Explore PETSc as the interface

13



Using PETSc as the interface 

• Linear Algebra is the basis for many HPC codes and matches 
the WSE architecture well

• Use petsc4py (because CS-2 host code is in python)

14



Using PETSc as the interface 

• Implement a set of key kernels in CSL to build up higher level 
functions

• Vector operations

• Dense Matrix operations

• Sparse Matrix operations

• KSP solver, e.g. Conjugate Gradient

• Kernels are parameterised
• fabric width and height

• number of elements per PE

15



Using PETSc as the interface 

16



Programming challenges

• This interface works! But..

• Hard to write general/reusable code for CS-2
• HPC API has room for improvement

• Hardware resource constraints
• Much easier to write specific code if you want best performance 

• The WSE is very flexible in theory, but not everything is 
available in the API

• route remapping

• no default access to PE coordinates at runtime

• The SDK goes through big changes

17



Performance challenges

• (End-to-end performance study not yet undertaken)

• Choices to be made about kernel shape and data distribution

• Kernel compilation cost incurred at runtime

• WSE startup time is significant

• BUT high-level view of the interface has potential to amortise 
these costs

• hide latencies with other work
• combine kernels to optimise dataflow between them

18



Experience of using the CS-2 for HPC

• Rewriting algorithms for a dataflow model is not trivial
• but performance gains can be significant

• Getting wavelet routing correct is error-prone

• Best suited for long running, single-purpose kernels

• Lots of repeated effort across WSE-using projects

• Published result reproducibility barriers

• Some confusion on multi-user cluster sharing with AI jobs

• Helpful support and active community

19



Future outlook

• CS-3 already here!

• Good software updates in the pipeline
• C++ host code

• More provide communication routines

• Linear algebra routines

• printf debugging

• Would benefit from community cooperation (e.g. libraries)

• HPC API will improve
• Co-design required to get it right

20



Using the Cerebras CS-2 for scientific 
computing (via PETSc) : Summary

21

Positive Challenges 

Performance potential Programming model

Tools (e.g. simulator) Big software changes

Continuous improvements Unclear how best to integrate in large apps

Helpful support Repeated/similar/irreproducible work

Active community Documentation and training


	Slide 1: Using the Cerebras CS-2 for scientific computing via PETSc
	Slide 2: Overview of Cerebras CS-2
	Slide 3: Wafer Scale Engine (WSE-2)
	Slide 4: Cerebras CS-2 system
	Slide 5: WSE architecture
	Slide 6: What types of application suit the WSE?
	Slide 7: Success stories
	Slide 8: Programming the CS-2 for AI
	Slide 9: Programming the CS-2 for HPC
	Slide 10: Programming the CS-2 for HPC
	Slide 11: Programming the CS-2 for HPC
	Slide 12: Using Cerebras CS-2
	Slide 13: In practice …
	Slide 14: Using PETSc as the interface 
	Slide 15: Using PETSc as the interface 
	Slide 16: Using PETSc as the interface 
	Slide 17: Programming challenges
	Slide 18: Performance challenges
	Slide 19: Experience of using the CS-2 for HPC
	Slide 20: Future outlook
	Slide 21: Using the Cerebras CS-2 for scientific computing (via PETSc) : Summary

