
Efficient Computation of Large-Scale
Statistical Solutions to Incompressible Fluid
Flows

Tobias Rohner, Siddhartha Mishra
June 04, 2024



Equations

Incompressible Navier-Stokes Equations

∂tu + ∇ · (u ⊗ u) + ∇p = 1
Re∆u

∇ · u = 0
u |t=0 = u0

• u flow velocity
• p pressure
• Re Reynold’s Number
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Turbulence

Vortex Stretching

∂tω + (u · ∇)ω = (ω · ∇)u︸ ︷︷ ︸
Vortex Stretching Term

+ 1
Re∆ω
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The Problem with Classical Simulations

Problem
DNS needs to resolve length scales ∆x ≪ Re− 3

4 , Ndof ∼ Re
9
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• What happens if we run an underresolved simulation?

N = 64 N = 128 N = 256
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Lack of Convergence
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Statistical Solutions to the Rescue

Random Initial Conditions

u0(x; σ) = u0(x) + ε(σ)

• σ Random Variable
• u0 classical initial condition
• ε perturbation

t = 0 t = 1
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Properties of Statistical Solutions

• Convergence under mesh refinement
• Convergence when reducing perturbation amplitude
• Stability for perturbation types

N = 64 N = 128 N = 256 N = 512
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How to Compute a Statistical Solution

P (u0) P (u(t))

Challenge
Becomes highly computationally expensive!
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Some Simplifications

1. Restrict the domain to [0, 1]d

2. Enforce periodic boundary conditions
3. Compute the solution on an uniform grid
4. Trade resolution for Monte Carlo samples
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Spectral Viscosity

∂tûk +
(
1 − kk⊺

|k|2
)

· ik⊺ · B̂k = −εN |k|2ûk

ûk |t=0 = û0,k

with B = u ⊗ u.

Computational Cost
• M Samples
• Sample Cost O(Nd+1 log N)

Total Cost O(MNd+1 log N) = O(MN4 log N)
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Aliasing
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Computational Kernels

Want to Solve

∂tûk +
(
1 − kk⊺

|k|2
)

· ik⊺ · B̂k = −εN |k|2ûk

1. Pad û O(Nd)
2. u = F−1[û] O(Nd log N)
3. B = u ⊗ u O(Nd)
4. B̂ = F [B] O(Nd log N)
5. Unpad B̂ O(Nd)
6. Compute ∂tû O(Nd)

Bottleneck
Kernels are bandwidth limited =⇒ Run everything on the GPU
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Parallelization Strategy

Sample 0

Node 0,0

Node 0,1

Node 0,2

Sample 1

Node 1,0

Node 1,1

Node 1,2

Sample 2

Node 2,0

Node 2,1

Node 2,2

Sample 3

Node 3,0

Node 3,1

Node 3,2

Important
Prefer parallelization over samples rather than splitting up the
domain!
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Single-Rank Solver

Kernel 0

Kernel 1

Kernel 2

Kernel 0

Kernel 1

Kernel 2

• Naive version
• Each Kernel has its own

memory
• Lots of wasted resources

• Optimized version
• All Kernels share a buffer
• 12.5% less memory in

single-rank solver
• 50% less memory in

distributed solver
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Distributed Solver

Slab Decomposition (N = 10, p = 3)

Important Questions
• How to minimize communication?
• How to pad the data?
• Are there some other optimizations?
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Padded FFT

Pad in x, y Inverse FFT in x, y

Transpose in x, z

Pad in x Inverse FFT in x

x
y

z
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FFT Optimization

FFTW & cuFFT
• "Good" sizes: N = 2a3b5c7d

• But sometimes N ′ > N is faster!
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Transpose

· · ·

· · ·

· · ·

... ... .... . .

P1

P2

Pp

Sending

· · ·

· · ·

· · ·

... ... .... . .
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P2
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Receiving
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Transpose – Task Scheduling

time

CPU

Copy Engine

GPU

...

· · ·

· · ·

· · ·

Preprocess

MPI_Sendrecv

Postprocess
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Alltoall Communication
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Alltoall Communication
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Strong Scaling

• Scaling over MC samples
• Base Case:

• N = 512
• M = 128
• p = 4

• Scaling over domain
• Base Case:

• N = 512
• M = 1
• p = 4
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Weak Scaling

• Scaling over MC samples
• Base Case:

• N = 512
• M = 128
• p = 4

• Scaling over domain
• Base Case:

• N = 512
• M = 1
• p = 4
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Experiments – Taylor-Green

u0(x, y, z) = cos(2πx) sin(2πy) sin(2πz)
v0(x, y, z) = − sin(2πx) cos(2πy) sin(2πz)
w0(x, y, z) = 0

t = 0 t = 5
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Experiments – Taylor-Green

K41
limν→0

〈
ν ∥∇uν∥2

L2
x

〉
= ε0 > 0
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Experiments – Shear Layer

u0(x, y, z) =

1 if z ≤ 1
2

−1 if z > 1
2

v0(x, y, z) = 0
w0(x, y, z) = 0

t = 0 t = 1 26



Experiments – Shear Layer

Takeaway
Statistical moments seem to behave very well. So although we
are not able to really describe turbulence, I am confident that for
statistics it is possible to at least at some degree!
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Thank you!


