Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows

Tobias Rohner, Siddhartha Mishra June 04, 2024

Incompressible Navier-Stokes Equations

$$\partial_t \mathbf{u} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) + \nabla p = \frac{1}{\text{Re}} \Delta \mathbf{u}$$

 $\nabla \cdot \mathbf{u} = 0$
 $\mathbf{u} \mid_{t=0} = \mathbf{u}_0$

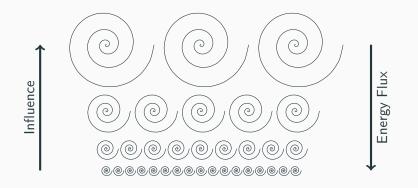
- \mathbf{u} flow velocity
- *p* pressure
- Re Reynold's Number

Turbulence

Vortex Stretching

$$\partial_t \omega + (\mathbf{u} \cdot \nabla) \omega = \underbrace{(\omega \cdot \nabla) \mathbf{u}}_{\text{Re}} + \frac{1}{\text{Re}} \Delta \omega$$

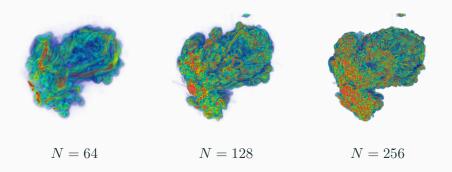
Vortex Stretching Term



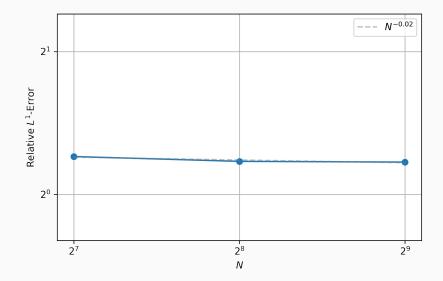
Problem

DNS needs to resolve length scales $\Delta x \ll {\rm Re}^{-rac{3}{4}}$, $N_{\rm dof} \sim {\rm Re}^{rac{9}{4}}$

• What happens if we run an underresolved simulation?



Lack of Convergence

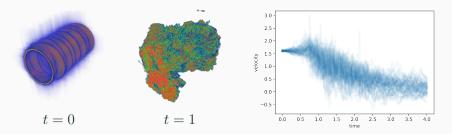


Statistical Solutions to the Rescue

Random Initial Conditions

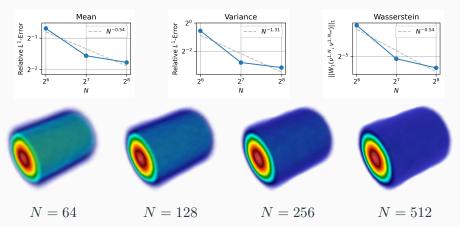
$$\mathbf{u}_0(x;\sigma) = \mathbf{u}_0(x) + \varepsilon(\sigma)$$

- σ Random Variable
- \mathbf{u}_0 classical initial condition
- ε perturbation

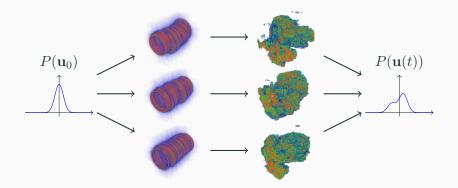


Properties of Statistical Solutions

- Convergence under mesh refinement
- Convergence when reducing perturbation amplitude
- Stability for perturbation types



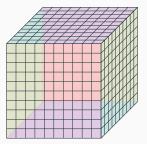
How to Compute a Statistical Solution



Challenge Becomes highly computationally expensive!

Some Simplifications

- 1. Restrict the domain to $[0,1]^d$
- 2. Enforce periodic boundary conditions
- 3. Compute the solution on an uniform grid
- 4. Trade resolution for Monte Carlo samples



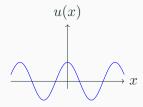
$$\begin{cases} \partial_t \hat{\mathbf{u}}_{\mathbf{k}} + \left(\mathbbm{1} - \frac{\mathbf{k}\mathbf{k}^{\mathsf{T}}}{|\mathbf{k}|^2}\right) \cdot i\mathbf{k}^{\mathsf{T}} \cdot \hat{\mathbf{B}}_{\mathbf{k}} &= -\varepsilon_N |\mathbf{k}|^2 \hat{\mathbf{u}}_{\mathbf{k}} \\ \\ \hat{\mathbf{u}}_{\mathbf{k}} \mid_{t=0} &= \hat{\mathbf{u}}_{0,\mathbf{k}} \end{cases}$$
with $\mathbf{B} = \mathbf{u} \otimes \mathbf{u}$.

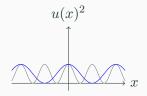
Computational Cost

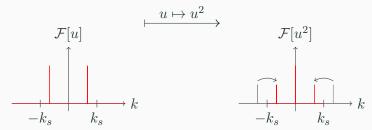
- M Samples
- Sample Cost $\mathcal{O}(N^{d+1}\log N)$

Total Cost $\mathcal{O}(MN^{d+1}\log N) = \mathcal{O}(MN^4\log N)$

Aliasing







Computational Kernels

Want to Solve

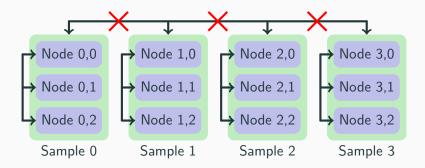
$$\partial_t \hat{\mathbf{u}}_{\mathbf{k}} + \left(\mathbb{1} - \frac{\mathbf{k} \mathbf{k}^{\mathsf{T}}}{|\mathbf{k}|^2} \right) \cdot i \mathbf{k}^{\mathsf{T}} \cdot \hat{\mathbf{B}}_{\mathbf{k}} = -\varepsilon_N |\mathbf{k}|^2 \hat{\mathbf{u}}_{\mathbf{k}}$$

- 1. Pad $\hat{\mathbf{u}}$ $\mathcal{O}(N^d)$
- 2. $\mathbf{u} = \mathcal{F}^{-1}[\hat{\mathbf{u}}] \qquad \mathcal{O}(N^d \log N)$
- 3. $\mathbf{B} = \mathbf{u} \otimes \mathbf{u}$ $\mathcal{O}(N^d)$
- 4. $\hat{\mathbf{B}} = \mathcal{F}[\mathbf{B}]$ $\mathcal{O}(N^d \log N)$
- 5. Unpad $\hat{\mathbf{B}}$ $\mathcal{O}(N^d)$
- 6. Compute $\partial_t \hat{\mathbf{u}} \quad \mathcal{O}(N^d)$

Bottleneck

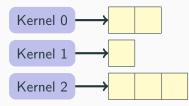
Kernels are bandwidth limited \implies Run everything on the GPU

Parallelization Strategy

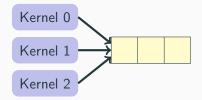


Important

Prefer parallelization over samples rather than splitting up the domain!

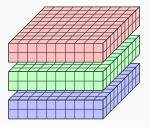


- Naive version
- Each Kernel has its own memory
- Lots of wasted resources



- Optimized version
- All Kernels share a buffer
- 12.5% less memory in single-rank solver
- 50% less memory in distributed solver

Distributed Solver

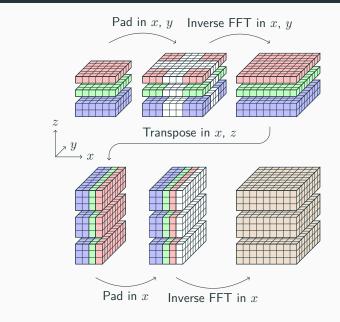


Slab Decomposition (N = 10, p = 3)

Important Questions

- How to minimize communication?
- How to pad the data?
- Are there some other optimizations?

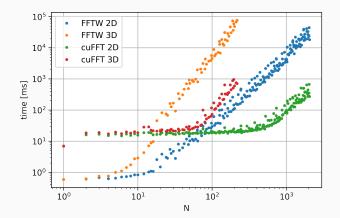
Padded FFT

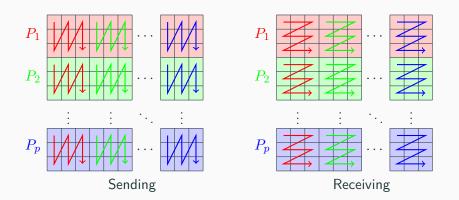


FFT Optimization

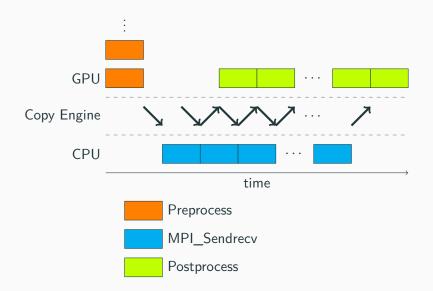
FFTW & cuFFT

- "Good" sizes: $N = 2^a 3^b 5^c 7^d$
- But sometimes N' > N is faster!

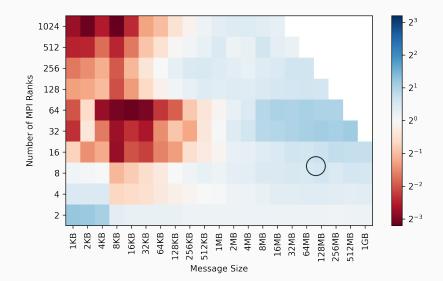




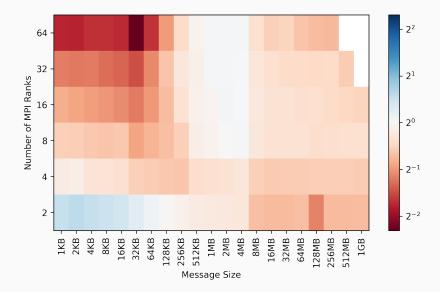
Transpose – Task Scheduling



Alltoall Communication



Alltoall Communication

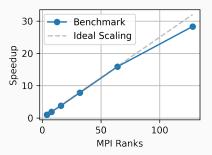


Strong Scaling

- Scaling over MC samples
- Base Case:
 - N = 512

•
$$M = 128$$

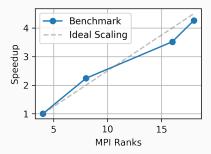
■ *p* = 4



- Scaling over domain
- Base Case:
 - N = 512

•
$$M = 1$$

•
$$p = 4$$

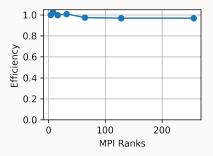


Weak Scaling

- Scaling over MC samples
- Base Case:
 - N = 512

•
$$M = 128$$

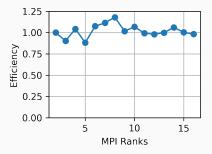
■ *p* = 4



- Scaling over domain
- Base Case:
 - N = 512

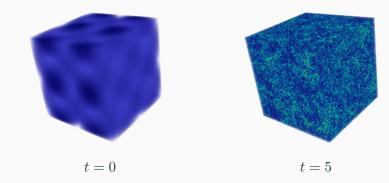
•
$$M = 1$$

•
$$p = 4$$



Experiments – Taylor-Green

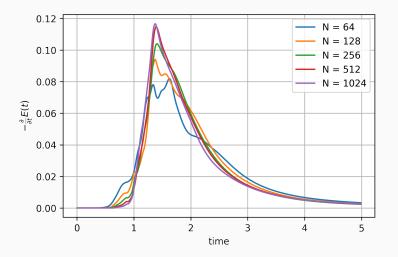
$$u_0(x, y, z) = \cos(2\pi x) \sin(2\pi y) \sin(2\pi z)$$
$$v_0(x, y, z) = -\sin(2\pi x) \cos(2\pi y) \sin(2\pi z)$$
$$w_0(x, y, z) = 0$$



Experiments – Taylor-Green

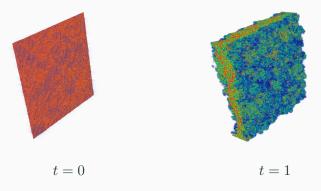
K41

$$\lim_{\nu \to 0} \left\langle \nu \left\| \nabla \mathbf{u}^{\nu} \right\|_{L^{2}_{x}}^{2} \right\rangle = \varepsilon_{0} > 0$$

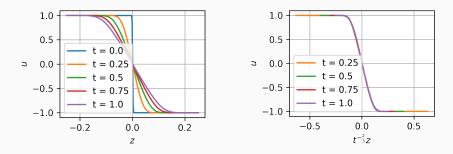


Experiments – Shear Layer

$$u_0(x, y, z) = \begin{cases} 1 & \text{if } z \leq \frac{1}{2} \\ -1 & \text{if } z > \frac{1}{2} \end{cases}$$
$$v_0(x, y, z) = 0$$
$$w_0(x, y, z) = 0$$



Experiments – Shear Layer



Takeaway

Statistical moments seem to behave very well. So although we are not able to really describe turbulence, I am confident that for statistics it is possible to at least at some degree!

Thank you!