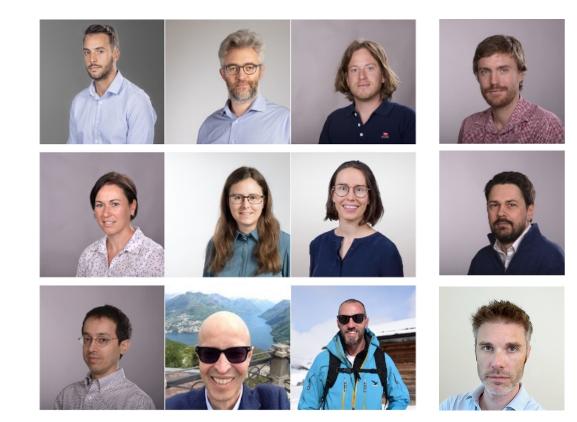


EMOI: CSCS Extensible Monitoring and Observability Infrastructure

PASC24 Jonathan Coles, CSCS June 3, 2024

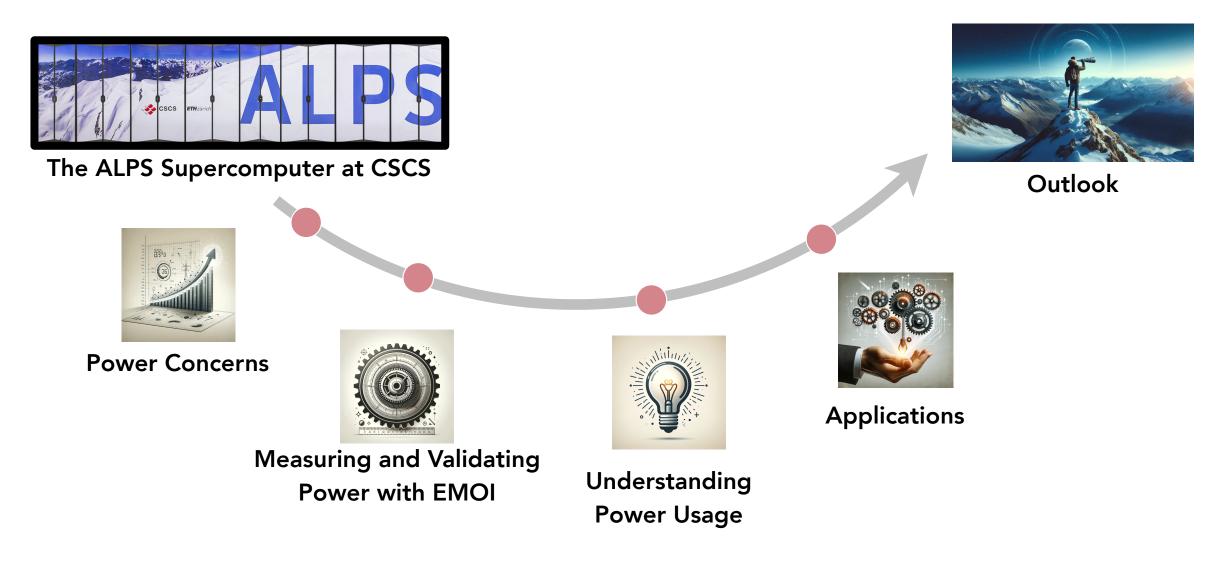


DISCLAIMER: I'm just the messenger!

This work is a collaboration of many people at CSCS.

Massimo Benini Michele Brambilla Dino Conciatore Monica Frisoni Mathilde Gianolli Gianna Marano Gianni Ricciardi

Benjamin Cumming Jean-Guillaume Piccinali Jonathan Coles



All results and conclusions presented today are on early access and pre-acceptance systems.

Agenda

Alps: a multi-tenant HPE Cray EX system with heterogeneous resources

Phase 0

- 2x AMD Rome 64-core CPUs
- Currently used in Eiger

2022

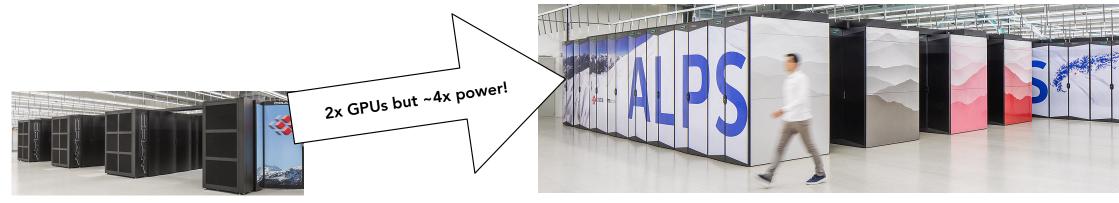
Phase 1

- AMD Milan CPUs
- 4x NVIDIA A100 or 4x AMD Mi250x GPUs

2024

Phase 2, Q1-Q2

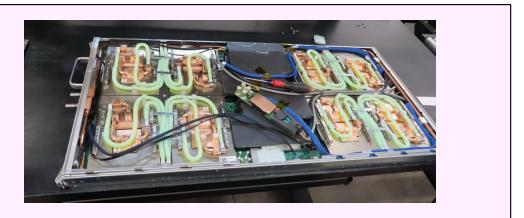
- 4x GraceHopper SuperChip Modules
 - 4x Grace 72-core ARM CPUs
 - 4x Hopper H100 GPUs


Phase 3, Q3

- AMD EPYC CPUs
- AMD INSTINCT MI300A GPUs

CSCS HPC Power Consumption

Piz Daint


- 5,700 P100 nodes
- 1 node → 300 W each under full load

- Alps
- > 2,500 GH200 nodes
- 1 node \rightarrow 2600 W under full load

Energy is currently ~10% of User Lab expenditures

ALPS Blade

- 2 Blanca Peak (EX254n) nodes each with 4x GraceHopper modules
- Each GH200 module:
 - 72 core ARM Neoverse v2 CPU with 128 GB LPDDR
 - H100 with 96 GB HBM2e
 - Thermal design power (TDP) = 800W
 - Will be power capped

Power Concerns at HPC Centers

Understanding how we use energy is vital.

Total Power

- Increased electricity costs in Europe since 2023
- Top machines are hungry
 - 22 MW for Frontier
 - 38(!) MW for Aurora
 - ~7 MW for ALPS in production

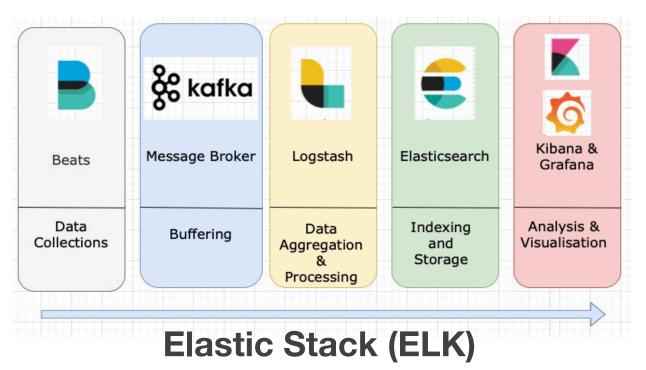
Тор 500	Green 500	Top 6 Systems June 2024	Rmax [PFlops/s]	T500 Power [kW]	G500 Power Eff. [GF/W]
1	7	Frontier / ORNL	1,206.00	22,786	62.58
2	42	Aurora / ANL	1,012.00	38,698	26.15
3	-	Eagle / MS Azure	561.20	-	-
4	68	Fugal / RIKEN	442.01	29,899	15.41
5	12	LUMI / EuroHPC	379.70	7,107	53.42
6	14	Alps / CSCS	270.00	5,194	51.98

Efficiency

- Top systems are getting more energy efficient.
- More science, but not less energy.

Green 500	#1 System Efficiency [GF/W]	Approx. Relative Change [%]		
2019 - June	15.1	-		
2019 - Nov.	16.9	11		
2020 - June	21.1	20		
2020 - Nov.	26.2	19		
2021 - June	29.7	12		
2021 - Nov.	39.4	25		
2022 - June	62.7	37		
2022 - Nov.	65.1	4		
2023 - June	65.4	0		
2023 - Nov.	65.4	0		
2024 - June	72.7	10		

Extensible Monitoring and Observability Infrastructure


EMOI aims to minimize the burden on human operators who manage the **deployment**, **monitoring**, **maintenance**, and **upgrading** of the observability infrastructure.

EMOI Observability Cluster Components

- Beats: lightweight data shippers
- Kafka: message broker, push model, implements streaming telemetry and acts as a buffer
- Logstash: data processing pipeline

- Elasticsearch: distributed search and analytics engine designed for storing large volumes of data
- Kibana & Grafana: visualization tools, build dashboards, view and analyze data

Dynamic deployments of an Observability Cluster

- app_g

name: ApplicationSet definitions:

filebeat
metricbeat
metallb

- cert-manager

- external-dns

- external-secrets

PULL

SYNC

*

Argo CD is an open-source continuous delivery tool

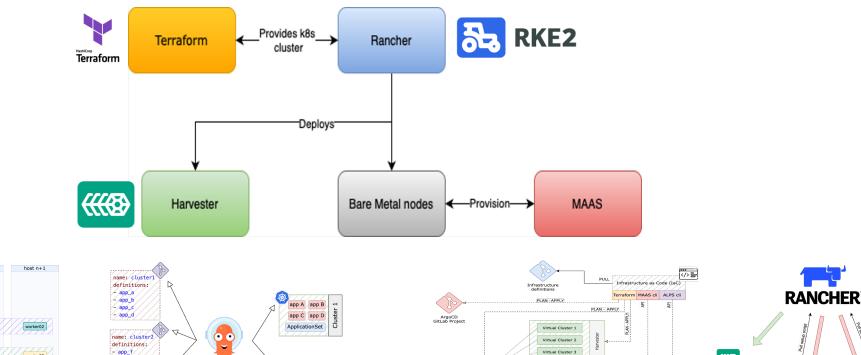
for Kubernetes following a GitOps methodology.

app F app G

ApplicationSet

- Flexible: Multiple physical or virtual Kubernetes cluster dynamically deployed to accommodate custom workflows or external customers
- Scalable: provide horizontal scalability to meet changing demands

 Automated: apply Infrastructure-as-Code (IaC) principles and git-ops approach


₩

HARVESTER

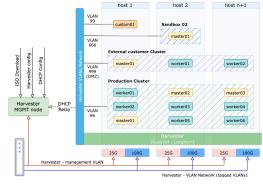
Rancher allows users to centrally manage **multiple** Kubernetes clusters, regardless of their location or

provider, from a single platform.

HPC

Rancher

HA Cluster


Bare Metal Cluster 1

Bare Metal Cluster 2

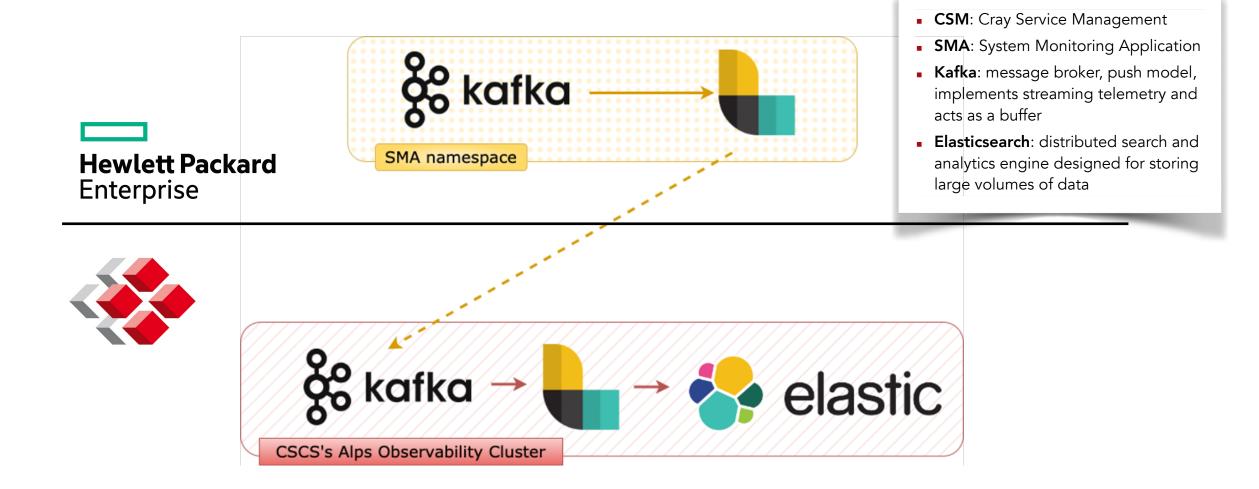
HPC Cluster 1

HPC Cluster 2

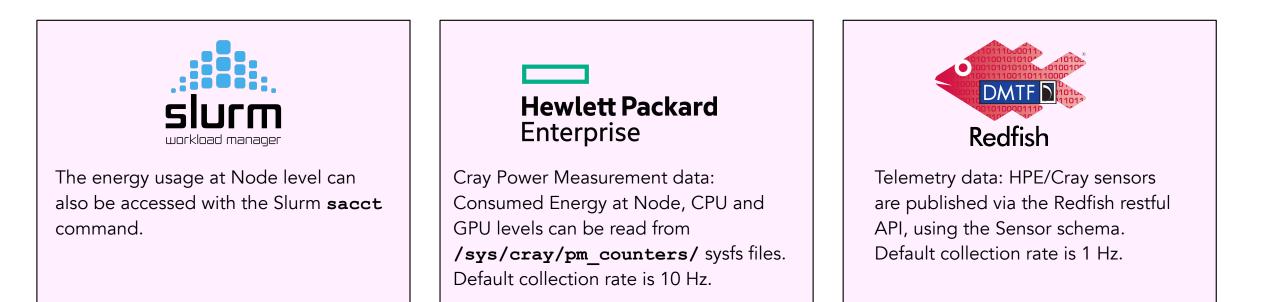
CSCS k8s vG

CSCS

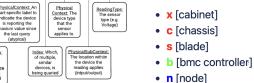
Harvester uses **Kubernetes** as its orchestration engine, allowing for effective management of resources and workloads



Baremetal


vmware[®]

Integration with HPE's CSM-SMA Kafka Bus

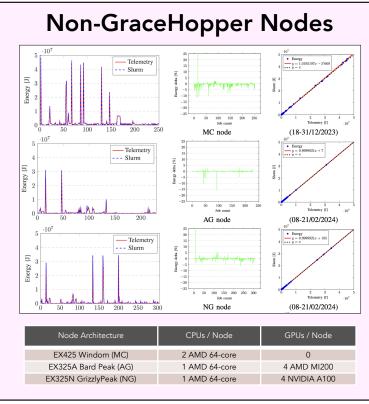


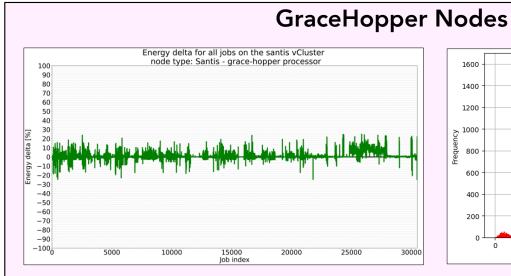
Collecting Energy Data

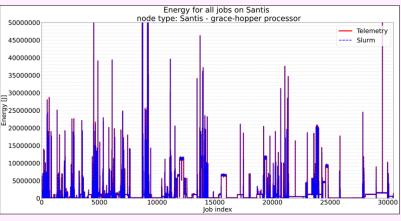
	t /sys/	- In001 /(cray/pm_ 1414856	counte	rs/acce		JY						https://x8000c2s7b1/redfish/v1/Ch	assis/Node0/Sens	Parental Context: The upstream device of the device being m	rysicalContext: An rt-specific label to dicatte the device is reporting the axium value since the last query (atypical)	
	node	memory	cpu	cpu0	cpu1	cpu2	cpu3	accel0	accel1	accel2	accel3		Data for a physical enclosure	which, of multiple, upstream device	e de	simila evices, ng qua
zen2/zen3	+	+	+											being quaried		
a100	+	+	+					+	+	+	+					
gh200	+		+	+	+	+	+	+	+	+	+					
mi250x	+	+	+					+	+	+	+					

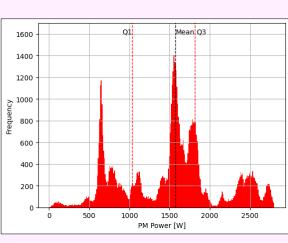
• Specific counters are available on different node types.

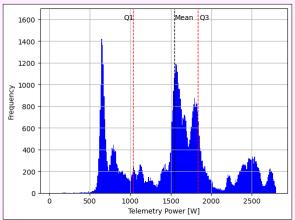
• Provide accumulated and instantaneous power readings for components on a node.



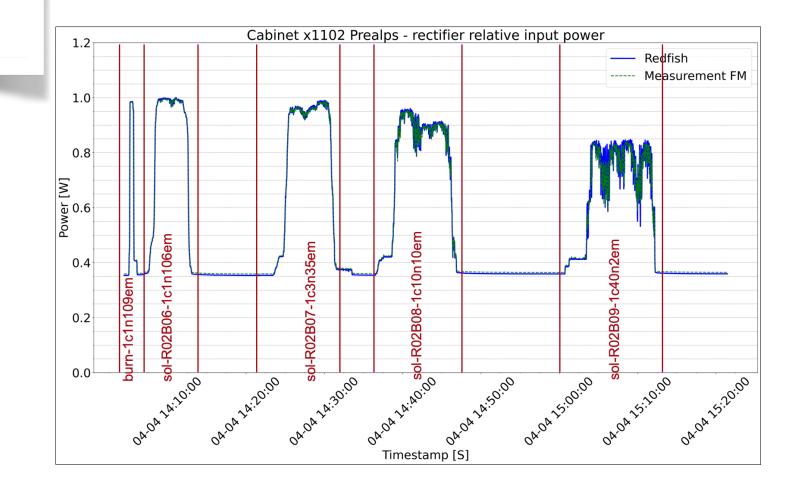



x1002c3s7b1n0


Validating Energy Data


We validate data by comparing the energy data collected from slurm/pm_counters (sysfs) with the data collected from telemetry (redfish).

Slurm vs Telemetry


83,845 jobs: a mix of small, medium, and large power-intensive jobs

Validating Energy Data

We validate data by comparing the energy data collected from telemetry (redfish) to a physically attached power meter.

Understanding Power Consumption

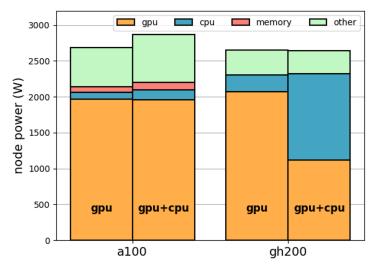
CSCS developed nodeburn

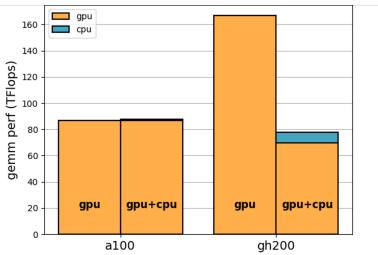
- Runs DGEMM back-to-back on the CPU and GPU
- Measures CPU and GPU performance
- Measures CPU and GPU power consumption
- github.com/eth-cscs/node-burn

nid005898:gpu	347 iterations, 15785.09 GFlops,	180.1 seconds,	6.144 Gbytes
nid005898:cpu	860 iterations, 2063.85 GFlops,	180.0 seconds,	0.864 Gbytes
nid005898:gpu	348 iterations, 15828.03 GFlops,	180.1 seconds,	6.144 Gbytes
nid005898:cpu	858 iterations, 2059.10 GFlops,	180.0 seconds,	0.864 Gbytes
nid005898:gpu	413 iterations, 18775.46 GFlops,	180.2 seconds,	6.144 Gbytes
nid005898:cpu	846 iterations, 2030.11 GFlops,	180.0 seconds,	0.864 Gbytes
nid005898:gpu	426 iterations, 19368.84 GFlops,	180.2 seconds,	6.144 Gbytes
nid005898:cpu	838 iterations, 2008.96 GFlops,	180.2 seconds,	0.864 Gbytes
nid005898:power It	otal 2639, cpu 1203, gpu0 290, gpu1 29	2. apu2 266. apu3 269	. cpu0 304, cpu1 304, cpu2 304, cpu3 292

On A100 (Grizzly Peak)

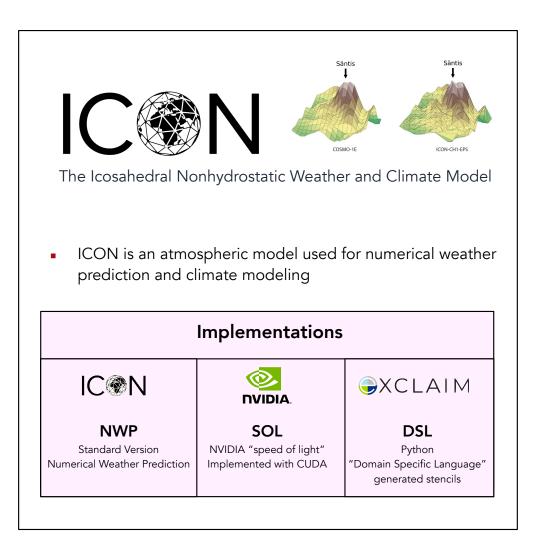
- GPU power consumption is unaffected by CPU workload
- CPU TDP is separate from GPU TDP
- The A100 GPU throughput is unaffected by CPU workload.

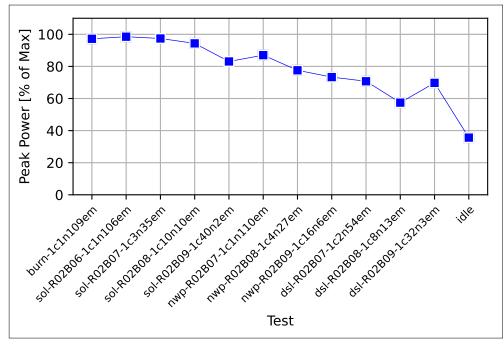

Experiment on A100 and GH200 nodes:


- Run GPU and CPU+GPU DGEMM
- GH200 had power cap of 620W

On GH200 (Blanca Peak)

- CPU+GPU power consumption is constant (~2,600W total)
- The CPU's power requirements are *prioritised* over the GPU
- This is "power sloshing" or "power steering"


Using 72 Grace cores halves H100 performance!



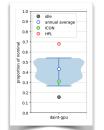
Measuring real-world applications

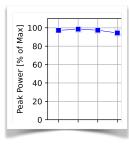
Experiment: Fill a single cabinet with ICON

- On Daint, ICON uses ~180W/node \rightarrow Relatively low ~50% of DGEMM
- On GH nodes, ICON consumes >80% of peak (peak ~ 2600W / node)

Model	Resolution
R2B6	40 km
R2B7	20 km
R2B8	10 km
R2B9	5 km

Concluding Remarks & Outlook




The Old:

- "Normal workloads" consumed on average 40% of nominal power
- ICON consumption was 30%
- Even nodeburn or HPL (High-Performance Linpack) could only achieve 70%

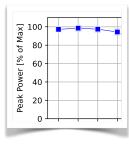
The New:

- We expect large well-optimised codes to use > 90 %
- We have to be prepared for normal workloads to consume peak power.
- CPUs and GPUs are no-longer independent entities.

Tools like EMOI provide critical insight into how applications behave and consume power.

This insight will be needed to develop efficient and power conscious applications.

Concluding Remarks & Outlook


The Old:

- "Normal workloads" consumed on average 40% of nominal power
- ICON consumption was 30%
- Even nodeburn or HPL (High-Performance Linpack) could only achieve 70%

The New:

- We expect large well-optimised codes to use > 90 %
- We have to be prepared for normal workloads to consume peak power.
- CPUs and GPUs are no-longer independent entities.

Tools like EMOI provide critical insight into how applications behave and consume power.

This insight will be needed to develop efficient and power conscious applications.

