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Motivation

Goal: Find a surrogate model, that is
* accurate
o efficient
* robust.
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Motivation
Goal: Find a surrogate model, that is
* accurate
« efficient
* robust.
Typically:
* Fit a (large) neural network
* Prune network into a surrogate model
Shortcoming:
e Surrogate model does not consider sensitivities and uncertainties.
— Derivative information may differ drastically.
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Motivation

Sensitivity information is often an afterthought, but:
e Captures vital information in many applications
* Crucial in optimization (e.g., Newton's method)

* Helps to learn robust & accurate surrogate models

Motif

Incorporate sensitivity information throughout
the learning and pruning process.
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Setup

In the domain of surrogate modelling with neural networks, let:

* N(9): The surrogate model as a neural network.
1. The parameters of the neural network.
fo: The learned function.

* S: The reference model sampler.
e L: The loss function, e.g. £ = ||-||2.

* (X;,y;): An (input, target) sample.
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Vanilla Training

Black-Box Model

Input Generator T { Loss Function £ } \

Neural Net

Match targets by differentiating the loss and optimize using, e.g., SGD.
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Sobolev Training
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Match targets and differential targets.
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Sobolev Loss

Definition (Sobolev Loss)

Given input x, target y, predicted output f(x), differential target V,y, and
predicted differential Vfy(x), the differential loss is defined by:

ly = Fa(0)I3 + Al Vay — Vifa(X)I3,

where \ € R, is an added balancing factor.
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Sobolev Loss: Interpretation

Srinivas and Fleuret [1] highlight that the Sobolev loss naturally arises
when considering pertubations.

Perturbation perspective:

Consider perturbation of input. By Taylor expansion [1]:

m m

Een(o,02) [Z(f(xi +€) —folXi + 6))2} = (f(x;) — fo(x)))?

i=1 i=1

+ 0 Z IVaf (%) — Vifo ()12 + O(c*).
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Sobolev Training

Algorithm Sobolev Training [2].

Require: The following inputs must all be initialized.

*» Surrogate model /() with function fy and parameters
** Reference model S

** Optimizer G

while 9 not converged do

{6, i, Vxyi)}m, ~ S > Sample training data
9 Vo 2L L(Fa(X:), Vi) + AL(Vifo(Xi), Vayi)
9+ G(9,9) > Update parameters
end while
return \/
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How large should the surrogate model be?
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How small can the surrogate model get?
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Pruning

Goal

Prune the surrogate model to increase the computational efficiency while
retaining accuracy.

Dense Pruning. Sparse Pruning.
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Pruning

Goal

Prune the surrogate model to increase the computational efficiency while
retaining accuracy.

Why not start with Sparse Training?

Dynamic Sparse Training (e.g., SET [3], RIGL [4]) works, but:
e are not designed for modern architectures — requires masking.
e still requires reasonable starting size guess.
e worse performance, in practice, compared to dense2sparse training.
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Pruning

Typically

Magnitude Pruning: |w|
Salience Pruning: |9%
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Pruning

Typically

Magnitude Pruning: |w|
Salience Pruning: ! w|

Downsides?

e must iterate over training data.

e sensitivity information?
* no global perspective.
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Pruning

Can we get a global perspective on weight importance?

Interval arithmetic!
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Interval Arithmetic

Fundamentals:
e Considers variables to be inside a fixed range, a trust region.

* Replace x € R with [x] € IR.
 [X] =[x, x] iIf {xeR|x <x<X}.
* f(IXD) = {f(x) [ x € [x]}.

Fundamental Theorem of Interval Arithmetic

A function f over an interval input box X = ([x]o, - - - , [X]n) iS guaranteed to
enclose the range of f over those inputs, i.e., range(f) C f(X) (Moore et al.).
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Interval Adjoints

Algorithmic Differentation (AD) [6] naturally
applies to interval arithmetic [7].

AD on Interval Arithmetic

* Apply AD as usual.

* Replace all operations of the source
transformed code with the interval
arithmetic equivalent.

ard Pass
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Interval Adjoint Significance Analysis

Significance Measure

S[y]([n],,,-) = Width([n]u) . maX(‘V[n]“[y”),

where:
* [v]: interval output
e width([x]) =X —x
e [: hidden layer index
* j: node index in given layer
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General framework

Significance of [ar):
Data .
Reference width([az,]) - max(|e], |d])
train |__Model - = =
(e }— L Tl = o

Interval
prune Adjoints aee

/ Sobolev Training;

T [ Loss Function £ ]—

Neural Net 3
]
P 3 No Recover
f 3 1 ‘ Sobolev ‘
- N Training Derivatives
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Case Study: Option pricing

Consider the SDE:
dS: = a(S,t)dt + b(S, t) dW,,

St

where:
® dW; is a Wiener process 100
® a:Rx[0,T] — R, the drift

® b:Rx[0,T] = R, the vola

Sample paths of SDE.
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Case Study: Option pricing

Consider the SDE:
dS: = a(S,t)dt + b(S, t) dW,,

St e Interested in the price:

, V = E[v(Sr, K],
100 |z

| with:
| l t ® S; the price at maturity T
0 T ® K the strike price
Sample paths of SDE. ® v(St, K) the payoff function
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Bachelier

The Bachelier model can be described as a SDE:
dS; = uSidt + o dW;,
where:
e t, the time index.

* 1, the constant drift for the interest rate.

* o, the constant volatility.

S, the underlying asset price at time t.

dW;, a Wiener process, i.e. Brownian motion.
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Gaussian Basket

Definition (Basket)

A Basket S; € R™ of m securities I ..., Sl has price:

m m
St:zwi5£’17 Zwi:1,
i=0 i=0

where w; is the weight associated with the ith security.

= Directly applicable to the Bachelier model.
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Surrogate Objective

Given

S, : initial spot price from basket

Find
V : option price (Value)

5’—;2 : 1st-order price sensitivity (Delta)

gis‘g : 2nd-order price sensitivity (Gamma)

= Solved using Least-Squares Monte Carlo.
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Least-Squares Monte Carlo
Least-Squares Monte Carlo method is equivalent to optimizing
9" = arg minE(p.)-,,+z [ V(9(6.2)) ~ fa(6)]].
where:
* fy is the fitted curve with coefficients ¥
 random input parameters 8 ~ ©;, (here: 8 = {S,})
e random path noise samplesz ~ Z

* payoff function v.
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Regression using Neural Networks

Values Deltas Gammas
0.4 0.20 - 2.0
S s ‘ 15
0.3 / 9] 9]
0.2 ) 0.10 1.0
“v
0.1 0.05 0.5 %
0.0{ ~— 0.00{ = 0.0{ ==~
0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

Baseline results (normalized) of Vanilla ML using a basic Multi-Layer Perceptron (MLP).
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After Interval Adjoint Significance Pruning

0.3

0.2

0.1

0.0~

Values 0.90 Deltas
0.15
/'/’
0.10
0.05
- 0.00{ -
0.5 1.0 1.5 0.5 1.0 1.5

—10

Gammas

_‘ “_/\‘; ,

0.5 1.0

Results of pruned model (and vanilla ML fine-tuning).
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After Sobolev fine-tuning

Values Deltas Gammas

= 0.20 90 mm
0.4 . . ’
0.15 =
0.3 / 15
0.2 0.10 1.0
0.1 0.05 0.5

0.0 0.001 = 001~
0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0

Results after Sobolev fine-tuning on derivative samples from learned NN.

Towards Sobolev Pruning | Neil Kichler



After Sobolev fine-tuning on reference

Values Deltas Gammas
0.20 =

0.4 - 2.0

03 0.15 15

0.2 0.10 1.0 \
%

0.1 0.05 0.5

0.0{,— 0.00{ - 0.01"

0.5 1.0 15 0.5 1.0 15 0.5 1.0 15

Results after Sobolev fine-tuning on derivative samples from Bachelier reference model.
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Results: Overview

R? score of surrogate models for a Bachelier modelled basket option (7 dimensions).

. . Sobolev fine-tunin
Predict Oversized Pruned g

NN NN NN Data Bachelier
Values  0.999545 0.999296 0.999805  0.999962
Deltas 0.998700 0.996718 0.999479  0.999863
Gammas  0.997033 0.902470 0.987393 0.997374
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Limitations & Future Work

Things to keep in mind

It requires:
* AD for interval arithmetic (no built-in support in ML libraries).
e Access to intermediate local partial derivatives.

* Derivative information from reference model
— need access to source.
® Expensive Jacobians? Approximate by sampling vjps.

Going beyond

* Add second-order sensitiviy information?
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Conclusion

Add sensitivity information by:

e Pruning previously learned network with
Interval Adjoint Significance Analysis.

e Using Sobolev Training to improve accuracy and
retain sensitivity information.

Paper & Code: github.com/neilkichler/sobolev-pruning

Reference
Model

Interval

prune Adjoints

recovers
values?

Recover

‘/ Sobolev ‘

\% ) Derivatives
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https://github.com/neilkichler/sobolev-pruning

Conclusion

Thank you for your attention!

Add sensitivity information by:

e Pruning previously learned network with
Interval Adjoint Significance Analysis.

e Using Sobolev Training to improve accuracy and
retain sensitivity information.

Paper & Code: github.com/neilkichler/sobolev-pruning

Reference
Model

Interval

prune Adjoints

recovers
values?

Recover

‘/ Sobolev ‘

. Training | Derivatives
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Comparison of Loss Curves

Surrogates for Bachelier Basket Option

0.151 . .
—— Vanilla Train Loss
—— Vanilla Test Loss
0,10/ —— Sobolev Train Loss
% Sobolev Test Loss
a3
<0051
0.00+ ‘ ‘ ‘ : ‘
0 25 50 5 100
Epoch
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Second-order sensitivity information

Hessian too expensive? — sample directions.

8y 9%
Y.

' Bx B
Black-Box Model | 2% 2°%
: (i}

Random directions o :
g 1
Draw random vectors v, s.t. Ejw'] = I. ' ;
V(NN Model) I
. % %
= E|[HW'| = HE|w'| = H. | e |
Eg,N(u=0,%=1). : roa | |
: |

PCA directions — E
o
® Take principal components. | § |
® Further reduction by taking k-most : T } |
. . T VPs !
significant components. L 1
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Pathwise Sensitivities

Fix some random sample path z ~ Z and input parameters 6.

We have unbiased estimates of, e.g., pathwise deltas, if:

d 0
Ezz [a—%v(g(e,z» = 8_SOEZNZ [v(g(@,z))], (1)
i.e. we can interchange the expectation with the derivative operator.
Practical Conditions for (1):

 Payoff v must be differentiable almost everywhere.

e Payoff v is Lipschitz continuous.
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Smoothing

We perform smoothing between function f, : R — Rand f, : R — R via
f: R x R? — R defined as

f(X7p> W) = (1 o U(vaa W))f-,(X) + O(Xapv W) Z(X)7

where ]

O(Xv p, W) = —x—p

1+e w

and p is the position to change between the two functions and w the width
of the smoothing.
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Smoothing

Forv = (-)": 0.6
Reference
0. X<O 0.4 —Smoothed
Split function into { .
, X=>0 ™
We obtain: =
X
Y(x,w) = -
1+ew
—6.4 —6.2 o 0.2 0.4
X
Equivalentto SiLU if p = o,w = 1. Smoothing (-)*, with p = 0, w = 0.05.
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