
Towards Sobolev Pruning
Training and pruning surrogate models with sensitivity information
Neil Kichler STCE, RWTH Aachen June 4, 2024



Joint work with:

Sher Afghan (STCE, RWTH Aachen) Uwe Naumann (STCE, RWTH Aachen)



Motivation
Goal: Find a surrogate model, that is
• accurate
• efficient
• robust.

Typically:
• Fit a (large) neural network
• Prune network into a surrogate model

Shortcoming:
• Surrogate model does not consider sensitivities and uncertainties.
↪→ Derivative information may differ drastically.
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Motivation
Sensitivity information is often an afterthought, but:

• Captures vital information in many applications

• Crucial in optimization (e.g., Newton’s method)

• Helps to learn robust & accurate surrogate models

Motif
Incorporate sensitivity information throughout

the learning and pruning process.
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Setup

In the domain of surrogate modelling with neural networks, let:

• N (ϑ): The surrogate model as a neural network.
ϑ: The parameters of the neural network.
fϑ: The learned function.

• S : The reference model sampler.

• L: The loss function, e.g. L = ∥·∥2
2.

• (xi, yi): An (input, target) sample.
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Vanilla Training

Match targets by differentiating the loss and optimize using, e.g., SGD.
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Sobolev Training

Match targets and differential targets.
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Sobolev Loss

Definition (Sobolev Loss)
Given input x, target y, predicted output fϑ(x), differential target ∇xy, and
predicted differential ∇xfϑ(x), the differential loss is defined by:

∥y − fϑ(x)∥2
2 + λ∥∇xy −∇xfϑ(x)∥2

2,

where λ ∈ R≥0 is an added balancing factor.
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Sobolev Loss: Interpretation
Srinivas and Fleuret [1] highlight that the Sobolev loss naturally arises
when considering pertubations.

Perturbation perspective:
Consider perturbation of input. By Taylor expansion [1]:

Eϵ∼N(0,σ2)

[ m∑
i=1

(f (xi + ϵ)− fϑ(xi + ϵ))2
]
=

m∑
i=1

(f (xi)− fϑ(xi))
2

+ σ2
m∑

i=1

∥∇xf (xi)−∇xfϑ(xi)∥2
2 +O(σ

4).
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Sobolev Training

Algorithm Sobolev Training [2].

Require: The following inputs must all be initialized.
➻ Surrogate model N (ϑ) with function fϑ and parameters ϑ
➻ Reference model S
➻ Optimizer G
while ϑ not converged do
{(xi, yi,∇xyi)}m

i=1 ∼ S ▷ Sample training data
ĝ← 1

m∇ϑ

∑m
i=1 L(fϑ(xi), yi) + λL(∇xfϑ(xi),∇xyi)

ϑ← G(ϑ, ĝ) ▷ Update parameters
end while
return N

Towards Sobolev Pruning | Neil Kichler 8



How large should the surrogate model be?
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How large should the surrogate model be?
How small can the surrogate model get?
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Pruning
Goal
Prune the surrogate model to increase the computational efficiency while
retaining accuracy.

Dense Pruning. Sparse Pruning.
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Pruning

Goal
Prune the surrogate model to increase the computational efficiency while
retaining accuracy.

Why not start with Sparse Training?
Dynamic Sparse Training (e.g., SET [3], RIGL [4]) works, but:
• are not designed for modern architectures→ requires masking.
• still requires reasonable starting size guess.
• worse performance, in practice, compared to dense2sparse training.
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Pruning

Typically

Magnitude Pruning: |w|
Salience Pruning: |∂L

∂w w|
· · ·

Downsides?
• must iterate over training data.
• sensitivity information?
• no global perspective.
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Pruning

Can we get a global perspective on weight importance?

Interval arithmetic!
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Interval Arithmetic
Fundamentals:
• Considers variables to be inside a fixed range, a trust region.
• Replace x ∈ R with [x] ∈ IR.
• [x] = [x, x] if {x ∈ R | x ≤ x ≤ x}.
• f ([x]) := {f (x) | x ∈ [x]}.

Fundamental Theorem of Interval Arithmetic
A function f over an interval input box X = ([x]0, · · · , [x]n) is guaranteed to

enclose the range of f over those inputs, i.e., range(f ) ⊆ f (X) (Moore et al.).
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Interval Adjoints

Algorithmic Differentation (AD) [6] naturally
applies to interval arithmetic [7].

AD on Interval Arithmetic
• Apply AD as usual.
• Replace all operations of the source

transformed code with the interval
arithmetic equivalent.
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Interval Adjoint Significance Analysis

Significance Measure

S[y]([n]l,i) = width([n]l,i) ·max
(∣∣∇[n]l,i[y]

∣∣),
where:
• [y]: interval output
• width([x]) = x − x
• l: hidden layer index
• i: node index in given layer
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General framework
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Case Study: Option pricing

Consider the SDE:
dSt = a(S, t) dt + b(S, t) dWt,

where:
• dWt is a Wiener process
• a : R× [0, T]→ R, the drift
• b : R× [0, T]→ R, the vola t

St

0 T

100

Sample paths of SDE.
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Case Study: Option pricing

Consider the SDE:
dSt = a(S, t) dt + b(S, t) dWt,

t

St

0 T

100

Sample paths of SDE.

Interested in the price:

V = E[ν(ST,K)],
with:
• ST the price at maturity T
• K the strike price
• ν(ST ,K) the payoff function
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Bachelier
The Bachelier model can be described as a SDE:

dSt = µStdt + σ dWt,

where:
• t, the time index.
• µ, the constant drift for the interest rate.
• σ, the constant volatility.
• St, the underlying asset price at time t.
• dWt, a Wiener process, i.e. Brownian motion.
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Gaussian Basket

Definition (Basket)
A Basket St ∈ Rm of m securities S[0]

t , . . . , S[m]
t has price:

St =
m∑

i=0

ωiS[i]
t ,

m∑
i=0

ωi = 1,

where ωi is the weight associated with the ith security.

⇒ Directly applicable to the Bachelier model.
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Surrogate Objective

Given
S0 : initial spot price from basket

Find
V : option price (Value)

∂V
∂S0

: 1st-order price sensitivity (Delta)
∂2V
∂S2

0
: 2nd-order price sensitivity (Gamma)

⇒ Solved using Least-Squares Monte Carlo.

Towards Sobolev Pruning | Neil Kichler 23



Least-Squares Monte Carlo
Least-Squares Monte Carlo method is equivalent to optimizing

ϑ∗ = argmin
ϑ

E(θ,z)∼Θin×Z

[
∥ν(g(θ, z))− fϑ(θ)∥2

2

]
,

where:

• fϑ is the fitted curve with coefficients ϑ

• random input parameters θ ∼ Θin (here: θ = {S0})

• random path noise samples z ∼ Z

• payoff function ν.
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Regression using Neural Networks

Baseline results (normalized) of Vanilla ML using a basic Multi-Layer Perceptron (MLP).
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After Interval Adjoint Significance Pruning

Results of pruned model (and vanilla ML fine-tuning).
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After Sobolev fine-tuning

Results after Sobolev fine-tuning on derivative samples from learned NN.
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After Sobolev fine-tuning on reference

Results after Sobolev fine-tuning on derivative samples from Bachelier reference model.

Towards Sobolev Pruning | Neil Kichler 28



Results: Overview

R2 score of surrogate models for a Bachelier modelled basket option (7 dimensions).

Predict Oversized Pruned
Sobolev fine-tuning

NN NN NN Data Bachelier

Values 0.999545 0.999296 0.999805 0.999962

Deltas 0.998700 0.996718 0.999479 0.999863

Gammas 0.997033 0.902470 0.987393 0.997374
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Limitations & Future Work
Things to keep in mind
It requires:
• AD for interval arithmetic (no built-in support in ML libraries).
• Access to intermediate local partial derivatives.
• Derivative information from reference model

↪→ need access to source.
• Expensive Jacobians? Approximate by sampling vjps.

Going beyond
• Add second-order sensitiviy information?
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Conclusion

Add sensitivity information by:
• Pruning previously learned network with

Interval Adjoint Significance Analysis.
• Using Sobolev Training to improve accuracy and

retain sensitivity information.

Paper & Code: github.com/neilkichler/sobolev-pruning
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Thank you for your attention!
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Comparison of Loss Curves
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Second-order sensitivity information
Hessian too expensive? → sample directions.

Random directions
Draw random vectors v, s.t. E[vvT] = I.

⇒ E
[
HvvT

]
= HE

[
vvT

]
= H.

E.g., N(µ = 0,Σ = I).

PCA directions
• Take principal components.
• Further reduction by taking k-most

significant components.
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Pathwise Sensitivities

Fix some random sample path z ∼ Z and input parameters θ.

We have unbiased estimates of, e.g., pathwise deltas, if:

Ez∼Z

[ ∂

∂S0
ν(g(θ, z))

]
=

∂

∂S0
Ez∼Z

[
ν(g(θ, z))

]
, (1)

i.e. we can interchange the expectation with the derivative operator.

Practical Conditions for (1):
• Payoff ν must be differentiable almost everywhere.
• Payoff ν is Lipschitz continuous.
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Smoothing

We perform smoothing between function f1 : R→ R and f2 : R→ R via
f̃ : R× R2 → R defined as

f̃ (x,p,w) = (1− σ(x,p,w))f1(x) + σ(x,p,w)f2(x),

where
σ(x,p,w) =

1
1 + e− x−p

w
,

and p is the position to change between the two functions and w the width
of the smoothing.
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Smoothing
For ν = (·)+:

Split function into

{
0, x < 0
x, x ≥ 0

.

We obtain:

ν̃(x,w) =
x

1 + e− x
w
.

Equivalent to SiLU if p = 0,w = 1.
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